20 research outputs found

    The future of evolutionary medicine: sparking innovation in biomedicine and public health

    Get PDF
    Evolutionary medicine - i.e. the application of insights from evolution and ecology to biomedicine - has tremendous untapped potential to spark transformational innovation in biomedical research, clinical care and public health. Fundamentally, a systematic mapping across the full diversity of life is required to identify animal model systems for disease vulnerability, resistance, and counter-resistance that could lead to novel clinical treatments. Evolutionary dynamics should guide novel therapeutic approaches that target the development of treatment resistance in cancers (e.g., via adaptive or extinction therapy) and antimicrobial resistance (e.g., via innovations in chemistry, antimicrobial usage, and phage therapy). With respect to public health, the insight that many modern human pathologies (e.g., obesity) result from mismatches between the ecologies in which we evolved and our modern environments has important implications for disease prevention. Life-history evolution can also shed important light on patterns of disease burden, for example in reproductive health. Experience during the COVID-19 (SARS-CoV-2) pandemic has underlined the critical role of evolutionary dynamics (e.g., with respect to virulence and transmissibility) in predicting and managing this and future pandemics, and in using evolutionary principles to understand and address aspects of human behavior that impede biomedical innovation and public health (e.g., unhealthy behaviors and vaccine hesitancy). In conclusion, greater interdisciplinary collaboration is vital to systematically leverage the insight-generating power of evolutionary medicine to better understand, prevent, and treat existing and emerging threats to human, animal, and planetary health

    Developmental plasticity and epigenetic mechanisms underpinning metabolic and cardiovascular diseases

    No full text
    The importance of developmental factors in influencing the risk of later-life disease has a strong evidence base derived from multiple epidemiological, clinical and experimental studies in animals and humans. During early life, an organism is able to adjust its phenotypic development in response to environmental cues. Such developmentally plastic responses evolved as a fitness-maximizing strategy to cope with variable environments. There are now increasing data that these responses are, at least partially, underpinned by epigenetic mechanisms. A mismatch between the early and later-life environments may lead to inappropriate early life-course epigenomic changes that manifest in later life as increased vulnerability to disease. There is also growing evidence for the transgenerational transmission of epigenetic marks. This article reviews the evidence that susceptibility to metabolic and cardiovascular disease in humans is linked to changes in epigenetic marks induced by early-life environmental cues, and discusses the clinical, public health and therapeutic implications that arise

    Anthropocene-related disease: The inevitable outcome of progressive niche modification

    No full text
    While the Anthropocene is often discussed in terms of the health of the planet, there has been less attention paid to its impact on the health of humans. We argue that there is now sufficient evidence of broad and growing adverse effects on human health to consider Anthropocene-related diseases and their impact on public health as a category of conditions needing specific recognition and preventative action. Using the examples of climate change-related health challenges, non-communicable disease, antimicrobial resistance and the unique challenges of the digital environment, we discuss how the profound and pervasive environmental changes of the Anthropocene can affect our health, with broad effects on societal health. We frame this concept in terms of human evolutionary history and cultural evolution’s runaway characteristics, reflecting our drive for continual and cumulative innovation for reasons beyond simply survival and Darwinian fitness. As the causative agents are often remote from those populations most adversely affected, prevention and mitigation require collective societal and policy actions.Lay summary: There is increasing evidence that our uniquely evolved ability to modify our environments rapidly and at an accelerating pace is having impacts on our health, particularly non-communicable diseases and poor mental wellbeing. Reframing these public health challenges as Anthropocene-related diseases emphasizes the need for collective responsibility and systems approaches to prevention

    Evolutionary and developmental mismatches are consequences of adaptive developmental plasticity in humans and have implications for later disease risk

    No full text
    A discrepancy between the phenotype of an individual and that which would confer optimal responses in terms of fitness in an environment is termed ‘mismatch’. Phenotype results from developmental plasticity, conditioned partly by evolutionary history of the species and partly by aspects of the developmental environment. We discuss two categories of such mismatch with reference primarily to nutrition and in the context of evolutionary medicine. The categories operate over very different timescales. A developmental mismatch occurs when the phenotype induced during development encounters a different environment post-development. This may be the result of wider environmental changes, such as nutritional transition between generations, or because maternal malnutrition or placental dysfunction give inaccurate information about the organism’s likely future environment. An evolutionary mismatch occurs when there is an evolutionarily novel environment. Developmental plasticity may involve immediate adaptive responses (IARs) to preserve survival if an environmental challenge is severe, and/or predictive adaptive responses (PARs) if the challenge does not threaten survival, but there is a fitness advantage in developing a phenotype that will be better adapted later. PARs can have long-term adverse health consequences if there is a developmental mismatch. For contemporary humans, maternal constraint of fetal growth makes PARs likely even if there is no obvious IAR, and this, coupled with the pervasive nutritionally dense modern environment, can explain the widespread observations of developmental mismatch, particularly in populations undergoing nutritional transition. Both developmental and evolutionary mismatch have important public health consequences and implications for where policy interventions may be most effective. This article is part of the theme issue ‘Developing differences: early-life effects and evolutionary medicine’.</p

    Epigenetic mechanisms that underpin metabolic and cardiovascular diseases

    No full text
    Cellular commitment to a specific lineage is controlled by differential silencing of genes, which in turn depends on epigenetic processes such as DNA methylation and histone modification. During early embryogenesis, the mammalian genome is 'wiped clean' of most epigenetic modifications, which are progressively re-established during embryonic development. Thus, the epigenome of each mature cellular lineage carries the record of its developmental history. The subsequent trajectory and pattern of development are also responsive to environmental influences, and such plasticity is likely to have an epigenetic basis. Epigenetic marks may be transmitted across generations, either directly by persisting through meiosis or indirectly through replication in the next generation of the conditions in which the epigenetic change occurred. Developmental plasticity evolved to match an organism to its environment, and a mismatch between the phenotypic outcome of adaptive plasticity and the current environment increases the risk of metabolic and cardiovascular disease. These considerations point to epigenetic processes as a key mechanism that underpins the developmental origins of chronic noncommunicable disease. Here, we review the evidence that environmental influences during mammalian development lead to stable changes in the epigenome that alter the individual's susceptibility to chronic metabolic and cardiovascular disease, and discuss the clinical implication
    corecore